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SUMMARY 

A method is presented to calculate the low-speed incompressible separated flow around multi-element 
aerofoils. The geometries of multi-element aerofoils in the physical plane are completely arbitrary and are 
transformed into multiple circles in the computational plane by a conformal mapping technique. Jacob’s 
model, which distributes sources on the separated surfaces of multi-element aerofoils to simulate the effects 
of separation, is adopted here. The position of the separated point and the pressure on the surfaces of 
multi-element aerofoils are calculated by iteratively coupling the potential flow and boundary layer. The 
effects of the boundary layer are simulated by modification of the boundary condition. All iterative 
procedures converge rapidly as a result of using the fast Fourier transform (FFT) technique. 
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I .  INTRODUCTION 

The numerical simulation of separated flow about multi-element aerofoils is a very important 
problem for the development of a high-lift system for a specific flight vehicle and mission. So 
far it has been carried out mainly in two ways: first, by numerical calculation of the complete 
Navier-Stokes (N-S) equations or an appropriate approximation of them; second, by assuming 
a physical model for the separated flow and then solving for the mathematical solution. In order 
to get an accurate representation of all phenomena connected with the complicated flow field 
introduced by flap deployment, it is necessary to employ fine grids with strong stretching near 
boundaries; thus the simulation of viscous separated flow around multi-element aerofoils by 
numerical solution of the N-S equations usually requires much computation time.’-’ For the 
second formulation Jacob6 did the initial research using a source or source distribution in the 
aft region of the aerofoils t o  form the separated region. Later this idea was adopted by a number 
of researchers with various modifications (see e.g. References 7-9). At present this is the method 
most commonly used to calculate the separated flow about aerofoils because of its comparatively 
better computational efficiency. 

This paper presents a new method to calculate the separated flow around multi-element 
aerofoils using conformal mapping and fast Fourier transform techniques. In this method the 
multi-element aerofoils in the physical plane are first transformed into multiple circles in the 
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computational plane; the flow solution is then calculated in the computational plane and finally 
transformed back to the physical plane. The flow is assumed to be incompressible and steady. 
The effects of the confluent boundary layer are neglected in the calculation. Jacob's method is 
used to model the separated flow about the multi-element aerofoils. The strength of sources 
distributed on the separated surfaces of the multi-element aerofoils is determined by taking the 
pressure as constant in separated regions above these surfaces. Boundary layer displacement 
effects are simulated by modification of the boundary condition that specifies the non-zero 
normal velocity distribution. 

The following sections give more details about this method. 

2. CONFORMAL MAPPING OF MULTI-ELEMENT AEROFOILS 

2. I .  Conformal mapping of a single-element aerofoil 

The purpose of conformal transformation is to map an aerofoil in the physical plane 2 
conformally on to a unit circle in the computational plane 5. 

Because the trailing edge point of the aerofoil is a singular point, a Karman-Treffez 
transformation is first introduced to map the aerofoil in the Z-plane on to a smooth quasi-circle 
in the o-plane: 

where z1 is the position of the trailing edge point at the Z-plane and zo is the position of a point 
located half-way between the point of maximum curvature at the leading edge and its centre of 
curvature; represents the parameter n/(2n - 5) ,  in which 7 is the included angle of the trailing 
edge. 

Following the Karman-Treffez transformation, James's method" is used to transform the 
smooth quasi-circle in the o-plane into a very accurate unit circle in the t-plane. 

James's method makes use of a series of the form 

where co, cl, c2 , .  . . are complex coefficients. 

on the circle gives 
Truncating the series after N terms in equation (2) and applying it at equally spaced points 

where the subscript j identifies a discrete point on the circle, N denotes the total number of 
discrete points on the circle and i = (- 1)1'2. 

The term on the left-hand side ofequation (3) is related to the geometric variables as follows: 
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where sj is the surface arc length in the o-plane and z j  is the surface angle. These relationships 
make possible the following iteration procedure. 

1. Calculate the values of rj and s j  at the defining points of the quasi-circle in the <,-plane 
and determine the cubic spline coefficients of T versus s. 

2. Estimate the values of \dt1/d5lj at equally spaced points on the circle; then perform 
equation (4) to obtain estimates of the values of s j .  

3. Use the cubic spline coefficients in step 1 to obtain values of z j  corresponding to the 
estimated values of sj and calculate arg(dtl /doj using equation (5). 

4. Apply two successive fast Fourier transform" calculations, the first of which uses the 
estimates of arg(d(l/dt)j to find estimates of the coefficients in equation (3) and the second 
of which uses these coefficients to provide updated estimates of the values of ln(d(,/d(Ij. 
Then calculate the values of s j  using equation (4). 

5. Repeat steps 3 and 4 until the values of Inld(l/dtlj converge. 

Given the coefficients of the series in equation (3), the coefficients a,, a,, a,, ... of the map 
function can be easily found as 

According to equations (1) and (6), an aerofoil in the Z-plane can be conformally transformed 
into a unit circle in the (-plane. 

2.2. Conformal mapping of multi-element aerofoils 

When one aerofoil in the Z plane is transformed into a unit circle in the (-plane, this mapping 
procedure also distorts the shapes of all other nearby aerofoils. Given co-ordinates in the Z-plane, 
an efficient and reliable Newton-Raphson iterative method is used to solve non-linear equation 
(6) for co-ordinates in the (-plane. Then another single-element mapping procedure as described 
above is used to transform another aerofoil into a circle. This procedure continues until all the 
aerofoils in the 2-plane have been transformed into multiple circles in the (-plane. Because the 
application of the Karman-Treffez transformation makes the shapes of the multi-element 
aerofoils nearly circular to begin with, once a body has been transformed into a circle, subsequent 
mappings of other bodies have only small effects on it. The general iterative procedure for 
transforming multi-element aerofoils into the same number of circles has been found to converge 
rapidly. The procedures of mapping are shown in Figure 1. 

Figure 1. Transformation of a two-element aerofoil into two circles: (a) physical geometry in the Z-plane; (b) geometry 
in the tu-plane after Karman-Treffetz transformation; (c) two final converged circles in the (-plane 
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3. CALCULATION OF POTENTIAL FLOW IN THE 5-PLANE 

The whole transformation procedure satisfies 

where 4 is the velocity potential. 
The normal and tangential velocity components transform as 

Circulation is unaffected by a conformal transformation. 
If the transformation satisfies the condition 

dz 

the general field equation, boundary condition and velocity condition at infinity are unchanged. 
The Kutta condition is also unchanged, because the present mapping derivative of the transfor- 
mation is continuous across the trailing edge of each element. Thus the potential flow around 
the multi-element aerofoils in the Z-plane is equal to the flow around the multiple circles in the 
t-plane. 

If N A  is used to denote the total number of aerofoils in the Z-plane, the potential flow around 
the multiple circles in the (-plane can be decomposed into N A  + 2 flow solutions." The first 
two solutions have uniform flow at large distances from the circles and zero circulation at any 
point in the flow field. The first solution has 0" angle of attack and velocity u, at infinity, while 
the second has 90" angle of attack and velocity E~ at infinity. Each of the other N A  flow solutions 
has stagnant flow at large distances from the circles and circulation Tj ( j  = 1,2, . . . , N A )  about 
thejth circle (zero circulation about the other circles). Reference 13 presents the analytical forms 
of these flow solutions for u,  = 1, u, = 1 and Tj = 1 separately by using the Milne-Thomson 
circle theorem, which states in essence that a circle can be introduced into a flow with complex 
potential w = f(t) by altering the complex potential to 

where f represents the conjugate of the function f, and ro and 5 ,  represent the radius and centre, 
respectively of the circle that is introduced into the flow. By application of the Kutta condition 
at the points corresponding to the trailing edge points of the aerofoils in the Z-plane and 
application of the velocity condition at infinity, u,, u y  and Tj ( j  = 1, 2, . . . , N A )  can be determined. 
Finally, the total potential flow around the multiple circles at a specific angle of attack can be 
obtained by superimposing these N A  + 2 flow solutions. 
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4. CALCULATION O F  BOUNDARY LAYER IN THE Z-PLANE 

After the velocity distribution of potential flow in the (-plane has been obtained, the velocity 
distribution of potential flow in the Z-plane can be found from equations (9) and (10). According 
to this velocity distribution, the boundary layer can be calculated in the Z-plane by an integration 
method. For multi-element aerofoils with a large gap the effects of the confluent boundary layer 
are small14 and are neglected in the present calculation. Thus the calculation of the boundary 
layer includes only three parts: laminar boundary layer calculation, transition calculation and 
turbulent boundary layer calculation. The quantities calculated are the displacement thickness 
6*, the shape factor H and the skin friction coefficient cf.  The laminar boundary layer is 
calculated by Cohen's method; the transition point is judged by Granvill's rule; and the turbulent 
boundary layer is calculated by Nash's method. Reference 15 presents these procedures in detail. 
In the calculation of the boundary layer here, separation is assumed to occur when the shape 
factor reaches H = 2.  

5. MODEL OF SEPARATED FLOW AROUND AN AEROFOIL 

For a flow with a large attack angle the separation of the boundary layer will occur somewhere 
on the upper surface of the aerofoil. Thus in Figure 2 separation occurs at point A on the upper 
surface and at the trailing edge on  the lower surface of the aerofoil. Jacob's model6 is introduced 
to simulate the separated region here. Along the separated surface BA, sources 4 s )  are distributed 
to model the effects of separation; q(s) is taken as a two-order function of s, which is the arc 
length from B to any point on the aerofoil surface BA. In order to make the separated stremlines 
AD and BD rejoin at some point D in the aft region of the aerofoil, a sink is placed at point 
P and the co-ordinates of P are chosen as 

x, = x, + LIP' (13) 

Y, = Y, + ( X ,  - X,) tan(p). (14) 

Here M is the midpoint of the line AB, up z 21 and p = ECL, where I is the x-direction distance 
between the two separated points A and B and E z 0.5. 

"0 XP c 
Figure 2. Jacobs model for the separated region 
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The strength of the sink at position P is chosen as 

E = - j: y(s) ds, 

where sA is the arc length of BA. 
The pressure on the separated surface is determined by the semi-empirical theory that the 

pressure is constant in the separated region above the upper surface of the aerofoil, which can 
be approximately satisfied by setting 

C,(A) = C,(B) = C,(C), (16) 

where C,(A), C,(B) and C,(C) represent the pressure at points A, B and C respectively. This 
condition can also be used to determine the final source distribution of y. 

Jacobs separated flow model which is simply described above is a semi-empirical theory 
mainly for engineering use. More detailed discussions about how the separated lines AD and 
BD, the position of sink P, the source distribution q(s) and the strength of the sink at point P 
are chosen can be found in Reference 6. 

6 .  ITERATIVE SOLUTION CONSIDERING THE EFFECTS O F  SEPARATION 

The iterative steps to find the flow solution considering the effects of separation are as follows. 

1. Map the multi-element aerofoils in the Z-plane conformally on to multiple circles in the 
(-plane; then find the velocity distribution of potential flow in the 5- and Z-planes. 

2. Calculate the boundary layer of both upper and lower surfaces of the multi-element aerofoils 
in the Z-plane until separation occurs. 

3. Distribute sources y(s) on the separated surfaces of the aerofoils; simulate the displacement 
thickness of attached flow as an equivalent source distribution; then transform these sources 
on the surfaces of the aerofoils in the Z-plane into sources on the surfaces of the multiple 
circles in the l-plane. The sink at Zp is also transformed into the sink at lP. 

4. Calculate the flows induced by the sources distributed on the surfaces of the circles and 
the sink at 5,; then superimpose these flows on the potential flow calculated in step 1. 

5 .  Find the corrected u,, u,,, source distribution y(s), sink Z ,  and circulation Tj ( j  = 1, 
2, . . . , N A )  by application of equation (16), of the Kutta condition at the points correspond- 
ing to the trailing edge points of the multi-element aerofoils the Z-plane and of the 
velocity conditions at infinity. Then again calculate the flows induced by u,, u,,, y(s), Z,, 
Tj ( j ,=  1,2, . . . , N A )  and superimpose these flows to obtain the total velocity distribution 
considering the effects of separation. 

6. Repeat steps 2-5 until the stable separation points (if multiple separations occur at the 
surfaces of multi-element aerofoils) and pressure distribution are obtained. 

In step 4 the flow induced by equivalent sources distributed on a circle is calculated as follows. 
When equivalent sources are determined, the boundary shape is unchanged, but the normal 
velocity boundary condition is changed. On  the circle surface corresponding to attached flow 
of the aerofoil the normal velocity is given by16 
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where s is the arc co-ordinate. On the circle surface corresponding to separated flow of the 
aerofoil the normal velocity u, is equal to the strength of sources distributed on that part of the 
surface. This induced flow also satisfies zero-flow perturbation at large distances from the circle, 
so the induced flow velocity can be written as 

where b,, b,, . . . are complex coefficients and i = ( -  1)’”. 
On the surface of the circle equation (18) can also be rewritten as another formulation 

u,  + iu, = b ,  + b,eie + ... .  (19) 

Given the values of u, at N points on the circle, it is possible in principle to determine only 
the first N / 2  complex coefficients. This’can be done in an efficient manner using the FFT 
algorithm. Given the coefficients, another FFT calculation can be used to  give the o,-values at 
the points on the circle. Velocity components at points off the circle are determined directly from 
equation ( 1  8). For the multiple circles, first the induced flow is calculated based on every single 
circle, then the total induced flows are obtained by superimposing them. 

The flow induced by the sink at tp is also calculated by using the analytical form presented 
in Reference 13. 
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Figure 3. Comparison of pressure distributions for the GA(W)-I single-element aerofoil (a = 18.4”, Re = 2.5 x lo6) 
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Figure 4. Comparison of pressure distributions for the GA(W)-I twoelement aerofoil ( 29%~ model, 40" fowler flap, 
a = 15". Re = 2.2 x lo6): (a) main aerofoil; (b) fowler flap 
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Figure 5. Comparison of pressure distributions for the GA(W)-1 two-element aerofoil ( 3 0 % ~  model, 40" fowler flap, 
a = 12.8", Re = 2.2 x lo6): (a) main aerofoil; (b) fowler flap 
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7. RESULTS AND DISCUSSION 

Using the method described above, we first study the viscous flow around the GA(W)-1 
single-element aerofoil under an attack angle of 18.4". In  the numerical calculation, separation 
is supposed to occur at about 3 8 % ~  on the upper surface of the aerofoil, while the experimental 
data" show that separation occurs at about 4 0 % ~ .  It is found that the variation in H from 1.8 
to 2.6 has very little effect on determining the position of separation, because H increases rapidly 
near the separation point. Figure 3 presents the calculated pressure distribution and the 
experimental results on the surfaces of the GA(W)-I aerofoil. The figure shows that the 
numerical results are in good agreement with the experiment results. In the iterative calculation, 
if N is taken as 64, it is found that about 13 iterations are needed to get a converged circle; 
eight iterations are needed to obtain a converged pressure distribution and a stable separation 
point. Because the FFT is repeatedly used in all iterative procedures, the calculation is greatly 
reduced. 

Next, two examples of separated flow around multi-element aerofoils are studied. Figure 4 
presents the comparison of calculated pressure distribution and experimental results" for the 
flow around the GA(W)-1 aerofoil with a 2 9 % ~  fowler flap under an attack angle of 15", while 
Figure 5 presents the comparison of calculated pressure distribution and experimental results'* 
for the flow around the GA(W)-1 aerofoil with a 3 0 % ~  fowler flap under an attack angle of 

4*0 F 
0- 
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Figure 6 .  Comparison of lift 
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12%”. From these two figures it is observed that the calculated pressure distribution is generally 
in agreement with the experimental data, except at the leading edge of the flaps where the 
calculated pressure is a little higher than the experimental results. This is mainly because the 
effects of the confluent boundary layer are neglected in the present numerical calculation. 

Finally, the lift coefficient curve for the GA(W)-1 aerofoil with a 2 9 % ~  fowler flap is presented 
in Figure 6. The figure shows that the present numerical method can be an excellent tool for 
predicting the lift coefficient of multi-element aerofoils even after the occurrence of maximum 
lift coefficient. 

8. CONCLUSIONS 

A method has been presented to calculate the steady, incompressible viscous separated flow 
around multi-element aerofoils. On the basis of the present results, the following conclusions 
can be drawn. 

1. Conformal mapping technique can be a very efficient tool to calculate the pressure 

2. This method can accurately predict the lift coefficient of multi-element aerofoils even after 
distribution of separated flow around multi-element aerofoils. 

the occurrence of maximum lift coefficient. 
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